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We present a computational scheme allowing for a self-consistent treatment of a dispersive metallic photonic
metamaterial coupled to a gain material incorporated into the nanostructure. The gain is described by a generic
four-level system. A critical pumping rate exists for compensating the loss of the metamaterial. Nonlinearities
arise due to gain depletion beyond a certain critical strength of a test field. Transmission, reflection, and ab-
sorption data as well as the retrieved effective parametersare presented for a lattice of resonant square cylinders
embedded in layers of gain material, and split ring resonators with gain material embedded into the gaps.
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The field of metamaterials [1, 2] is driven by fascinat-
ing and far-reaching theoretical visions such as, e.g., perfect
lenses [3], invisibility cloaking [4, 5], and enhanced optical
nonlinearities [6]. This emerging field has seen spectacular
experimental progress in recent years [1, 2]. Yet, losses are
orders of magnitude too large for the envisioned applications.
Achieving such reduction by further design optimization ap-
pears to be out of reach. Thus, incorporation of active media
(gain) might come as a cure. The dream would be to sim-
ply inject an electrical current into the active medium, leading
to gain and hence to compensation of the losses. However,
experiments on such intricate active nanostructures do need
guidance by theory via self-consistent calculations (using the
semi-classical theory of lasing) for realistic gain materials that
can be incorporated into or close to dispersive media to re-
duce the losses at THz or optical frequencies. The need for
self-consistentcalculations stems from the fact that increas-
ing the gain in the metamaterial, the metamaterial properties
change, in turn changing the coupling to the gain medium
until a steady-state is reached. A specific geometry to over-
come the severe loss problem of optical metamaterials and to
enable bulk metamaterials with negative magnetic and elec-
tric response and controllable dispersion at optical frequencies
is to interleave active, optically pumped gain material layers
with the passive metamaterial lattice.

For reference, the best fabricated negative-index material
operating at around1.4 µm wavelength [7] has shown a figure
of merit, FOM = −Re(n)/Im(n) ≈ 3, wheren is the ef-
fective refractive index. This experimental result is equivalent
to an absolute absorption coefficient ofα = 3 × 104 cm−1,
which is even larger than the absorption of typical direct-gap
semiconductors such as, e.g., GaAs (whereα = 104 cm−1).
So it looks difficult to compensate the losses with this sim-
ple type of analysis, which assumes that the bulk gain coef-
ficient is needed. However, the effective gain coefficient, de-
rived from self-consistent microscopic calculations, is amore
appropriate measure of the combined system of metamate-
rial and gain. Due to pronounced local-field enhancement ef-

fects in the spatial vicinity of the dispersive metamaterial, the
effective gain coefficient can be substantially larger thanits
bulk counterpart. While early models using simplified gain-
mechanisms like explicitly forcing negative imaginary parts
of the local gain material’s response function produce unre-
alistic strictly linear gain, our self-consistent approach pre-
sented below allows for determining the range of parameters
for which one can realistically expect linear amplificationand
linear loss compensation in the metamaterial. To fully under-
stand the coupled metamaterial-gain system, we have to deal
with time-dependent wave equations in metamaterial systems
by coupling Maxwell’s equations with the rate equations of
electron populations describing a multi-level gain systemin
semi-classical theory [8].

In this paper, we apply a detailed computational model to
the problem of metamaterials with gain. The generic four-
level atomic system tracks fields and occupation numbers at
each point in space, taking into account energy exchange be-
tween atoms and fields, electronic pumping and non-radiative
decays [8]. An external mechanism pumps electrons from the
ground state levelN0 to the third levelN3 at a certain pump-
ing rateΓpump, which is proportional to the optical pumping
intensity in an experiment. After a short lifetimeτ32 elec-
trons transfer non-radiatively into the metastable secondlevel
N2. The second level (N2) and the first level (N1) are called
the upper and lower lasing levels. Electrons can be trans-
ferred from the upper to the lower lasing level by spontaneous
and stimulated emission. At last, electrons transfer quickly
and non-radiatively from the first level (N1) to the ground
state level (N0). The lifetimes and energies of the upper and
lower lasing levels areτ21, E2 and τ10, E1, respectively.
The center frequency of the radiation isωa = (E2 − E1)/~

which is chosen to equal2π × 1014 Hz. The parameters
τ32, τ21, andτ10 are chosen5 × 10−14 s, 5 × 10−12 s, and
5 × 10−14 s, respectively. The total electron density,N0(t =
0) = N0(t) + N1(t)+ N2(t) +N3(t) = 5.0× 1023 /m3, and
the pump rateΓpump are controlled variables according to the
experiment. The time-dependent Maxwell equations are given
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FIG. 1: (Color online) Square lattice of metallic square cylinders
(blue) that have a Lorentz behavior embedded in layers of gain ma-
terial (red). The dielectric constant of the cylinders is given by
ε = 1 + ω2

p/(ω2
p − 2iωγ − ω2), wherefp = ωp/2π = 100 THz

and γ = 2πf , andf takes different values in the cases we have
examined.

by ∇ × E = −∂B/∂t and∇ × H = εεo∂E/∂t + ∂P/∂t,
whereB = µµoH andP is the dispersive electric polariza-
tion density from which the amplification and gain can be ob-
tained. Following the single electron case, we can show [8]
that the polarization densityP (r, t) in the presence of an elec-
tric field obeys the following equation of motion

∂2P (t)

∂t2
+ Γa

∂P (t)

∂t
+ ω2

aP (t) = −σa∆N(t)E(t) (1)

whereΓa is the nonradiative decay width of the atomic transi-
tion ωa and is equal to2π×5×1012 Hz or 2π×20×1012 Hz.
The factor∆N(t) = N2(r, t) − N1(r, t) is the population
inversion that drives the polarization, andσa is the coupling
strength ofP to the external electric field and its value is taken
to be10−4 C2/kg. It follows [8] from Eqn. 1 that the amplifi-
cation line shape is Lorentzian and homogeneously broadened
[9]. The occupation numbers vary according to
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where 1
~ωa

E · ∂P
∂t

is the induced radiation rate or excitation
rate depending on its sign.

In order to solve the behavior of the active materials in the
electromagnetic fields numerically, the finite-differencetime-
domain (FDTD) technique is utilized [10], using an approach
similar to the one outlined in Refs. 10–12. In the FDTD calcu-
lations, the discrete time step and space step are chosen to be
∆t = 8.33×10−18 s and∆x = 5.0×10−9 m for simulations
on the structure as shown in Fig. 1, and∆t = 8.33 × 10−19 s
and∆x = 1.0 × 10−9 m for simulations on the structure as
shown in Fig. 4. The initial condition is that all the electrons
are in the ground state, so there is no field, no polarization
and no spontaneous emission. Then the electrons are pumped
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FIG. 2: (Color online) The transmission vs. signal amplitude for
the loss-compensated metamaterial of Fig. 1 with gain bandwidth
5THz, loss bandwidth20 THz, and pumping rateΓpump = 2.65 ×
109 s−1. The metamaterial response is linear within the region where
the loss-compensated transmission is exactly unity. For incident
fields stronger than104 V/m this metamaterial becomes non-linear.

from N0 to N3 (then relaxing toN2) with a constant pump-
ing rateΓpump. The system begins to evolve according to the
system of equations above.

We have performed numerical simulations on one-
dimensional (1D) and two-dimensional (2D) systems with
gain [13]. Previous studies [14–18] have considered loss re-
duction by incorporating gain but where not self-consistent
(see introduction) [14–17]. As the first simple model system,
we will discuss a 2D metamaterial system (shown in Fig. 1)
which consists of layers of gain material and dielectric wires
that have a resonant, Lorentz type electric response to emu-
late the resonant elements in a realistic metamaterial. We will
have to study whether we will be able to compensate the losses
of the metamaterials associated with the Lorentz resonancein
the wires by the amplification provided by the gain material
layers without destroying the linear response of the metama-
terial. First we generate a narrow band Gaussian pulse of a
given amplitude and let it propagate through the metamaterial
without gain, and we calculate the transmitted signal emerging
from the metamaterial which has also Gaussian profile but the
amplitude is much smaller than that of the incident pulse de-
pending on how much loss occurs in the metamaterial. Then
we introduce the gain and start increasing the pumping rate
and find a pumping rate for which the transmitted pulse is of
the same amplitude as the incident pulse. In addition, for fixed
pumping rate, we start increasing the amplitude of the incident
Gaussian pulse and we would like to see how high we can go
in the strength of the incident electric field and still have full
compensation of the losses, i.e. the transmitted signal equals
the incident signal, independent on the signal strength. Inthis
region we have compensated loss and still linear response of
the metamaterial; here, the shape of the transmitted Gaussian
is only affected by the dispersion but not dependent on the sig-
nal strength. We have calculated the transmission versus the
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FIG. 3: (Color online) The retrieved results for the real andimaginary
part of the effective permittivity,ε, with and without gain. In addi-
tion, we have plottedIm(εg) versus frequency. Below compensation,
t = 0.75; Gain and Lorentz bandwidths are20THz and5THz, re-
spectively.

strength of the electric field of the incident signal. As shown
in Fig. 2, we found that for a rather broad region of low inten-
sity input signal we have a linear response all the way up to
incident electric field of103 V/m. As an example, we have
studied three layers, rods - gain material - rods, to see how
muchΓpump we need to compensate the losses. As expected,
we found thatΓpump is proportional to the imaginary part of
the permittivityε of the metal.

We first present results for three layers of the system shown
in Fig. 1. First, the full width at half maximum (FWHM) for
Lorentz metal and gain are chosen to be5 and20 THz, re-
spectively. With the introduction of gain the absorption atthe
resonance frequency of100 THz decreases, ultimately reach-
ing zero (not shown). So the gain compensates the losses.
In Fig. 3, we plot the retrieved results for the real and imag-
inary parts ofε without gain and with gain slightly below
compensation. Notice that we can have theRe(ε) ≈ −1
with Im(ε) ≈ 0 at 102 THz, slightly off the resonance fre-
quency. From Fig. 3, one can also see thatRe(ε) ≈ 2.5 with
Im(ε) ≈ 0 at97 THz. So one can obtain a lossless metamate-
rial with positive or negativeRe(ε). Once we introduce gain,
the imaginary part ofε of our total system with gain is equal
to the sum of theIm(ε) without gain and the imaginary part
of εg, the dielectric function of the gain material. This result
is unexpected, because there is no coupling between the 2D
Lorentz metal with the gain material. This is indeed true be-
cause of the continuous shape of the Lorentz metal cylinders
and the gain material slabs have zero depolarization field. In
contrast to finite length wires (hence a 3D problem) where
the dipole interactions between Lorentz metal and gain mate-
rial would be dominated by the quasi-static nearfieldo(1/r3),
here the interaction is ordero(ω log |kr|), only via the propa-
gating field, and much weaker. Therefore, for this 2D model,
gain and loss are approximately independent. The behavior
would obviously be different in a 3D situation, which, how-
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FIG. 4: (Color online) Geometry for a unit cell of the square SRR
system with gain. The gain (shown in orange) is introduced inthe
gap region of the SRR. The dimensions area = 100 nm, l = 80 nm,
t = 5nm, d = 4 nm andw = 15nm.

ever, is computationally excessively demanding. Thus, we
consider a 2D version of the split ring resonator (SRR) as a
more realistic and also more relevant model. Here, the rele-
vant polarization is across the finite SRR gap and, therefore,
the coupling to the gain material is in fact dipole like.

In Fig. 4, we present the unit cell of our SRR system with
gain material embedded in the SRR gap. The dimensions of
the SRR are chosen such that a magnetic resonance frequency
at 100 THz results, which can overlap with the peak of the
emission of the gain material. The FWHM of the gain mate-
rial is 20 THz, andΓpump is 1.4 × 109 s−1. In Fig. 5a, we
plot the retrieved results of the real and imaginary part of the
magnetic permeability,µ, with and without gain. With the in-
troduction of gain, the weak and broad resonant effectiveµ of
the lossy SRR becomes strong and narrow; the gain effectively
undamps the LCR resonance of the SRR. Notice that here
losses in the magnetic effective response are compensated by
electric gain in the SRR gap. So with the introduction of gain,
we obtain a negativeµ with a very small imaginary part in an
otherwise typical SRR response, which means that the losses
have been compensated by the gain. In Fig. 5b, we plot the
retrieved results for the effective index of refractionn with
and without gain. Note that for a lossless SRRn is purely real
away from the resonance and imaginary in a small band above
the resonance whereµ is negative. ComparingRe(n) slightly
below the resonance at97 THz, we find a effective extinction
coefficientα = (ω/c) Im(n) ≈ 3.50 × 104 cm−1 without
gain, andα ≈ 1.24×104 cm−1 with gain; hence and effective
amplification ofα ≈ −2.26 × 104 cm−1. This is much larger
than the expected amplificationα ≈ −1.39×103 cm−1 for the
gain material at the given pumping rate [19]. The difference
can be explained by the field enhancement in the gap of the
resonant SRR. Indeed, taking the observed field enhancement
factor in the SRR gap of≈ 55, the energy per unit cell pro-
duced by the gain material inside the gap is≈ 18 times larger
than for the homogeneous gain medium which compares very
well to the factor≈ 20 between the simulated SRR effective
medium and the homogeneous gain medium. If we further in-
crease the pumping rate the magnetic resonance becomes even
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FIG. 5: (Color online) The retrieved results for the real andimaginary
part of (a) the effective permeability,µ, and (b) the corresponding
effective index of refraction,n, with and without gain for a pumping
rateΓpump = 1.4×109 s−1. The gain bandwidth is20 THz. Notice
the width of the resonance with gain is1.66 THz.

narrower (0.96 THz for Γpump = 1.8 × 109 s−1). When the
pumping rate reachesΓpump = 1.9×109 s−1, Im(µ) becomes
negative and we have overcompensated at the resonance fre-
quency. By increasingΓpump even more (≈ 5 × 109 s−1)
one starts seeing lasing (spasing) [20, 21] in our system (not
shown), which is not in the focus of this work.

In conclusion, we have proposed and numerically solved
a self-consistent model incorporating gain in 2D dispersive
metamaterials. We show numerically that one can compen-
sate the losses of the dispersive metamaterials. There is a
relatively wide range of signal amplitudes for which the loss-
compensated metamaterial still behaves linear; at higher am-
plitudes the response is non-linear due to the gain. As an ex-
ample, we have demonstrated that the losses of the magnetic
susceptibilityµ of the SRR can be easily compensated by the
gain material. The pumping rate needed to compensate the
loss is much smaller than the bulk gain. This aspect is due to
the strong local-field enhancement inside the SRR gap.
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